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This study produces numerical solutions to the Shrödinger equation. The allowed energy states
of particles and the corresponding wavefunctions was simulated for the case of a quantum harmonic
oscillator, as well as an approximation of a hydrogen atom modeling electrons bound to a nearby
proton. The Numerov algorithm we used was validated by comparing the results of these simulations
to their analytical solutions, and extrapolated to generate information about an electron near a
diatomic hydrogen molecule.

INTRODUCTION AND OVERVIEW

In introductory quantum mechanics classes stu-
dents are exposed to the particle in a box thought
experiment, in which one imagines square potential
well of finite length. Within the bounds of this well
the potential is zero, any particle is classically al-
lowed to be in this region. For any distance beyond
the length of the well, on either side, the potential
infinitely high, thus no particle can have enough en-
ergy to move into this region. These regions are ref-
ered to as the classically ”forbidden regions”. Such
forbidden regions are not restricted to square wells.
Any position where the potential energy function in
that region is higher than the kinetic energy of the
particle is classically forbidden. However quantum
mechanics tells us that a particle can exist where it
classically should not be able to. This is indicated
by it’s probability density being nonzero in these re-
gions.

The probability density to find a particle in a given
region is described by the wavefunction associated
with it’s energy level. In order to determine it’s
wavefunction, we must use the Schrödinger equa-
tion. The aim of this project is to simulate quan-
tum wavefunctions and probability densities using
numerical/computational methods. By doing this
we were able to show the likelihood that a particle
would exist outside the potential well encasing it.

Initially we aimed to simulate analytically solv-
able potentials. The first situation we modeled was
that of a one-dimensional, time-independent, quan-
tum harmonic oscillator. Once the accuracy of our
program was verified, we extended it to simulate the
case of a two-dimensional oscillator. Using the same
methodology a program modeling coulombic poten-
tials was written. Finally, a program that simulates
the potential well of diatomic hydrogen was gener-
ated. In order to do this we implemented Numerov’s
algorithm, an advanced numerical technique.

DESCRIPTION OF COMPUTATIONAL
PROBLEM

In this study we numerically integrate the time
independent Shrödinger equation, a partial differen-
tial equation that describes the quantum state of a
physical system. The solution depends on the total
energy of the system; specifically the kinetic energy
of the particle whose wavefunction we wish to de-
termine, as well as the potential energy function in
the vicinity of the particle. Although analytical so-
lutions do exist for many systems, more complicated
interactions between the particle and its surround-
ings often require numerical solutions.

The computational approach to this problem is to
discretize Shrödinger’s equation onto a grid of finite
resolution and evaluate the solution based on a se-
ries of educated guesses. For this we used Numerov’s
method, named for Russian astronomer Boris Nu-
merov [4]. This method is optimized to integrate
second-order differential equations of the form:

d2y(x)

dx2
+ a(x)y(x) = 0

for some known function a(x). We can write
Shrödinger’s equation in this form as shown in
Eq. (1).

Contributing factors.

The quantization of energy levels in bound states
is a requirement for a physically significant solution,
which arise from the boundary conditions of the sys-
tem. Numerov’s algorithm can produce a waveform
for any energy, but it may not describe a physically
real system. If the energy level used to evaluate ψ
does not correspond to the correct energy level, ψ
will diverge. However, ψ and the corresponding en-
ergy level are both unknown in this problem. In
linear algebra terms, they describe an eigenfunction
and corresponding eigenvalue.
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The Shooting Method.

Some amount of guessing is required to arrive at
the solution to this problem. For a bound state
the energy level must be within the potential well,
so we can begin searching in the middle of the up-
per and lower limits of the potential energy levels;
E = (Emax − Emin)/2. If the waveform drawn by
Numerov’s algorithm using this energy level diverges
to some E > 0, or if it has more nodes than the
quantum state we wish to describe, then we know the
eigenvalue must be in the lower interval. Conversely,
we can also determine if the eigenvalue is in the
upper interval. We continue “shooting” waveforms
until we either have a converging solution with the
correct number of nodes, the gap between Emax and
Emin reaches a pre-determined minimum threshold,
or any of several possible failure states occur.

The Bisectional Approach.

One such failure state can be avoided with some
careful design. The Shrödinger equation is sensitive
to small variations in E, and small perturbations can
cause ψ to diverge. As a result, when integrating
outward at large distances from the origin, the ac-
cumulated errors from the Numerov approximation
can cause ψ to diverge even for the correct eigen-
value. To account for this, we use the knowledge
that no nodes can occur in the classically forbidden
region, which only decays exponentially. Using the
shooting method, we integrate ψL outwards in the
allowed region only, adjusting E until the correct
number of nodes is achieved. Then ψR is integrated
backwards in the forbidden region, and rescaled to
match the value of ψL at the classical limit. The
smoothness of the function at this junction can also
help converge on the eigenvalue; if ψ′R − ψ′L > 0 the
energy is too high, and we can choose choose the
upper or lower energy interval accordingly.

Numerov Algorithm.

The Numerov algorithm is specifically tailored for
solving the Schrödinger equation. For this reason
it is exceptionally more accurate and efficient than
any other numerical method. For this reason, our
programs implement the Numerov algorithm. Its
derivation is shown below.

In order to obtain the desired recursion we must
first manipulate the Schrödinger equation, Eq. 2, so
it takes the form:

ψ(2)(x) + F (x)ψ(x) = 0 (1)

In this context an exponent enclosed in parentheses
denotes a spatial derivative with respect to x, ψ(x)
is the one-dimensional wave function and

F (x) =
2m

~2
(E − V (x)).

Where m is the mass of the particle, ~ is the reduced
Plancks’s constant, E is the total energy, and V(x)
is the potential energy.
The next step is to approximate ψ(x ± h) using a
Taylor series expansion [2]:

ψ(x+ h) = ψ(x) + hψ(1)(x) + h2

2 ψ
(2)(x) +

h3

6 ψ
(3)(x) + h4

24ψ
(4)(x) + ...

ψ(x− h) = ψ(x)− hψ(1)(x) + h2

2 ψ
(2)(x)−

h3

6 ψ
(3)(x) + h4

24ψ
(4)(x)− ...

where h is an incremental change, not Planck’s con-
stant.
Next we take the sum of these two terms:

ψ(x+ h) + ψ(x− h) =

2ψ(x) + h2ψ(2)(x) + h4

12ψ
(4)(x) +O(h6)

By rearraging terms in the previous equation we
arrive at:

ψ(x+ h) =

−ψ(x− h) + 2ψ(x) + h2ψ(2)(x) + h4

12ψ
(4)(x) +O(h6)

Eq. 1 gives us ψ(2)(x) and allows us to solve for
ψ(4)(x):

ψ(4)(x) =
d2

dx2
(−F (x)ψ(x))

Finally we arrive at the desired iteration,

ψ(x+ h) =
ψ(x)[2− 5h2

6 F (x)]−ψ(x−h)[1+h2

12 F (x−h)]
1+h2

12 F (x+h)

allowing the algorithm to make the necessary cal-
culations.

Numerov Applied to Higher Dimensions.

In order to use numerov in calculating the value
of ψ in more than one dimension, iterations in
each direction must be accounted for. For the
two-dimensional, time-independent case:

ψ(x, y) = ψ(x+h,y)+ψ(x−h,y)+ψ(x,y+h)+ψ(x,y−h)
4−h2F (x,y)
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SCHRÖDINGER’S EQUATION

For any quantum mechanical system the wave
function, ψ, must be solved for, before one is able to
calculate the position probability density of a corre-
sponding particle [2]. In order to do this one must
solve the Schrödinger equation, devised by Erwin
Schrödinger in 1926 [3].

EΨ(~r) = [
~2

2µ
~∇2 + V (~r)]Ψ(~r) (2)

where V is the potential energy function, ∇ is the
gradient operator, and µ is the reduced mass of the
system:

m1m2

m1 +m2

This equation models the wave function of a particle
in three spatial dimensions [1].

QUANTUM HARMONIC OSCILLATOR

One-dimensional, time-independent case.

The Schrödinger equation for a one-dimensional
harmonic oscillator is:

d2ψ(x)

dx2
= −2m

~
[E − V (x)]ψ(x) (3)

where

V (x) =
1

2
Kx2.

This approach models the particle as a mass on
a spring, which experiences a restoring force F =
−Kx from a central equilibrium point. Classically,
the particle has angular frequency:

ω =

√
K

m
. (4)

In order to simplify the problem, we introduce adi-
mensional variables ξ, x and ε:

ξ ≡ (
mK

~2
)1/4

x ≡ (
mω

~
)1/2x

ε ≡ E

~ω
Then Eq. (3) becomes a function of ξ:

d2ψ(ξ)

dξ2
= −2(ε− ξ2

2
)ψ(ξ) (5)

For large ξ, the squared term dominates and the
equation above becomes asymptotic:

ψ(ξ)→ ξne−ξ
2/2 (6)

Eq. (6) produces nondiverging solutions when

ε = n+
1

2
, n = 0, 1, 2, ... (7)

Then the nth bound state in the quantum harmonic
oscillator has quantized energy levels [7]:

En = ~ω(n+
1

2
), n = 0, 1, 2, ... (8)

and the complete wavefunction associated with en-
ergy En is [3]:

ψn(ξ) = Hn(ξ)e−ξ
2/2 (9)

where Hn are Hermite polynomials of order n:

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

)

We use the analytic solutions for En and the cor-
responding ψn to compare with predictions made by
Numerov’s method, in order to determine the accu-
racy of the algorithm.

FIG. 1. The wavefunctions associated with the first six
bound eigenstates, n=0 to 5, as generated by Numerov’s
algorithm.
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n Predicted En Simulated En Fractional Error

0 1
2
~ω 0.500000035~ω 7.0× 10−8

1 3
2
~ω 1.50000008~ω 5.3× 10−8

2 5
2
~ω 2.50000012~ω 4.8× 10−8

3 7
2
~ω 3.50000014~ω 4.0× 10−8

4 9
2
~ω 4.50000016~ω 3.5× 10−8

5 11
2
~ω 5.50000018~ω 3.2× 10−8

TABLE I. Comparison of simulated and predicted eigen-
values

FIG. 2. The probability density of a particle in the n=2
state

An interesting feature of FIG. 2 is that the particle
has a nonzero probability to be outside the energet-
ically allowed region for a classical harmonic oscilla-
tor, which allows for the particle to “tunnel” through
energetic barriers under the right conditions. This
phenomenon has been well documented, and is the
basis for technological innovations such as the Scan-
ning Tunneling Microscope (STM) [5].

Two-dimensional, time-independent case.

The Schrödinger equation for a two-dimensional,
time-independent, quantum harmonic oscillator is:

ψ(2)(x, y) = −2m

~
[E − V (x, y)]ψ(x, y) (10)

where the potential is [6]:

V (x, y) =
1

2
m(ω2

xx
2 + ω2

yy
2)

and the total energy is [6]:

E = (nx +
1

2
)~ωx + (ny +

1

2
)~ωy.

Such a potential and total energy is analogous to
that of two independent one-dimensional harmonic
oscillators. For this reason they were expected and
verified to produce values twice as large as their one-
dimensional counterparts.

FIG. 3. The wavefunction of a particle in a potential
well, associated with the third bounded eigenstate, n=2,
as generated by Numerov’s algorithm

FIG. 3 is a graph of ψ(x, y) at its third bounded
eigenstate. As expected from FIG. 1, the wavefunc-
tion is symmetic about the x-axis. It is also apparent
that the wavefunction displays symmetry about the
y-axis. This is to be expected based of the analog
of the two-dimensional case being the same as two
independent one-dimensional harmonic oscillators.

This allows us to explicitly define the two-
dimensional wave function [6]:

ψ(x, y) =
√

2−(nx+ny)

nx!ny !
∗ (

m2ωxωy

π2~2 )
1
2 ∗

exp(
−m(ωxx

2+ωyy
2)

2~ ) ∗Hnx
(
√

mωx

~ x) ∗Hny
(
√

mωy

~ y)
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FIG. 4. The probability density of a particle in a potential
well, associated with the third bounded eigenstate, n=2,
as generated by Numerov’s algorithm

FIG. 4 depicts |ψ(x, y)|2 at its third bounded
eigenstate. Here |ψ(x, y)|2 has 2 nodes in the x-
direction and 2 nodes in the y-direction, as does the
corresponding wavefunction represented in FIG. 3.

Shown in FIG. 5 is a two-dimensional potential
well, used in Numerov’s algorithm to generate wave-
functions. This well is for a two-dimensional har-
monic oscillator. Within the well is the classically
allowed region in which a paticle can reside. Out-
side this well represents the “forbidden regions” -
regions a particle is not allowed to exist under clas-
sical conditions. It is expected that a particle’s po-
sition probability density will be zero at all places
it is forbidden. Yet it has been shown that this is
not always the case. This phenomenon is known as
tunneling, as discussed above.

FIG. 5. A two-dimensional potential well, used in Nu-
merov’s algorithm to generate wavefunctions

The potential well is the same for all bounded
eigenstates of a quantum harmonic oscillator. Al-
though FIG. 5 does not change, the wavefunction
and probability density do. FIG. 6 shows the wave-
function a particle trapped in such a potential well,
for its fifth bounded eigenstate.

FIG. 6. The wavefunction of a particle in a potential
well, associated with the fifth bounded eigenstate, n=4,
as generated by Numerov’s algorithm

In a similar fashion FIG. 7 shows a particle’s po-
sition probabilty density, associated with the fifth
bounded eigenstate.

FIG. 7. The probability density of a particle in a potential
well, associated with the fifth bounded eigenstate, n=4,
as generated by Numerov’s algorithm
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RESULTS AND ANALYSIS

Ultimately, we want to apply these techniques to
make an accurate model of real physical systems. An
infinite square well potential, as well as the parabolic
potential described in the harmonic oscillator case
can make approximations of the potential energy
function experienced by an electron around a pro-
ton. In reality, the hydrogen experiences a radially
symmetric coulombic potential:

V (r) = − e2

4πε0r
(11)

Where e is the elementary charge, and ε0 is the vac-
uum permittivity. Setting constant e2/4πε0 ≡ qe the
potential is:

q2e
r

(12)

The energy levels of this system are [7]:

En = −meq
4
e

2~2
1

n2
(13)

The negative energy level in this case describes the
binding energy of the electron to the proton. The
energy goes like -1/n, so in general electrons with
a lower quantum state have a greater binding en-
ergy. The wavefunctions generated by Numerov’s al-
gorithm of several bound states in a hydrogen atom
are shown below:

FIG. 8. The wavefunctions of the first five bound energy
states in a hydrogen atom.

FIG. 9. The probability density associated with the n = 2
energy state in a hydrogen atom.

n Predicted En, eV Simulated En, eV Fractional Error

1 −13.6058000 −13.6058000 0.0

2 −3.40145000 −3.40145000 0.0

3 −1.51175556 −1.51175556 0.0

4 −0.850362504 0.850362500 1.05× 10−8

5 −0.544231330 0.544232000 1.2× 10−7

TABLE II. Comparison of simulated and predicted eigen-
values in the hydrogen atom

The benefit of the numerical approach is that we
can also apply these methods to cases which are dif-
ficult or in some cases can not currently be solved by
analytical methods. For example, we can model the
wavefunction of an electron near a diatomic molecule
such as H2. There are several approximations be-
ing made here; we take only the principle quantum
number n into account, thus angular momentum,
quantum spin and magnetization are neglected. Ad-
ditionally, we neglect the bonded pair of electrons
shared by the H2 molecule, which would contribute
to the potential energy function in that region. As
currently written, our code is also only able to pro-
duce stable waveforms for certain conditions. A
wavefunction for an energy state with four nodes,
and the corresponding probability density is shown
below:
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FIG. 10. The wavefunction of an electron near a di-
atomic hydrogen molecule.

FIG 10 shows the wavefunction of an electron in
the vicinity of a diatomic hydrogen molecule. The
wavefunction does converge to reasonable results
away from the origin, but it’s difficult to interpret
if it describes a state which could physically occur.
For instance, FIG 11 below shows the probability
density of this wavefunction, but we see peaks near
the origin. Neglecting the influence of the bonded
electron pair in the molecule could explain this non-
physical result generated by our program.

FIG. 11. The probability density of an electron near a
diatomic hydrogen molecule.

CONCLUSIONS

Computational analysis of the Schrödinger wave
equation is no easy task. Once achieved, numerical
methods are able to assist us in obtaining otherwise
unachievable results. It is necessary to first model a
system with a known outcome, to insure the written
program functions properly. Only then is it possi-
ble to extrapolate the methodolgy and apply it to
systems that are not analytically solvable. This re-
sults in an understanding of the system otherwise
unachievable.

Computational modeling allows the visualization
of such physical phenomenon. Simulations aide our
understanding by not only allowing us to see the
scenario we are describing but also make predictions.
Predictions whos accuracy would otherwise not be
established.
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