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Abstract

All living matter contains isotopes of Carbon. In knowing Carbon to have a specific decay
rate, one is able to determine the age of biomass samples. This technique is know as Carbon-
dating. The decay of such isotopes is seemingly random but occurs with an overall average.
Such an average rate is fitted to a known distribution in order to use it in making various other
calculations and predictions.

1 Introduction

Patterns often arise from seemingly random collections of data. An example of this, used in lab
6a, is the counting of meteor sightings during a portion of a meteor shower. Such a collection of
data seems random since sightings are not guaranteed to occur at evenly spaced time intervals.
From these recordings a time series was generated. Such data becomes more useful when it is
re-binned (grouped) into quantized time packets. Although the raw data may make predicting
when any given meteor will be recorded nearly impossible, it is useful once patterns across
segments of time are analyzed. From such analysis, distribution patterns emerge.

Although a variety of distributions exist, this lab focused on the Poisson distribution. This
particular distribution was chosen due to how well it represented our collected data. This
was verified by fitting a Poisson distribution curve to our data points (equation 2). The Poisson
distribution equation was normalized in order to always generate a net probability of 1 (equation
1).

The techniques learned in the first portion of this lab are utilized in the later portion, when
analyzing the decay of unstable carbon isotopes. Poisson distribution fits using the Von Neu-
mann method will be used to determine the accuracy of estimated ages for specific biomaterial.
This is seen through the relative abundance of the remaining C14 isotope within a given sample.

2 Code

Various programs and plot files can be seen online at:
http://www2.hawaii.edu/∼cmutnik/lab6.html

1



2

3 Computational problem

In this weeks lab we had to model the decay of unstable carbon isotopes. The practicality of
doing this was shown when estimating the age of objects based off the amount of remaining C14
within the object.

The total number of trial minutes recorded in the data set, N, is know. This allows us to
use the normalized Poisson:

P (k : µ, N) = N µk
e−µ

k!
(1)

Where P is probability, k is an integer, and µ is the mean number of events in a time interval.
The Poisson function used in fitting the data:

f(x) = N
e−µµx

x!
(2)

Where N is the starting point used as an estimator for the number of trials.

N(t) = N12 +N11e−t/T11 +N10e−t/T10 (3)

Where N represents the number of atoms for each isotope of Carbon. T11 and T10 are the
characteristic 1/e decay times for each isotope, respectively.

4 Graphs

Figure 1: Portion of raw meteor sighting data



3

Figure 2: Histogram showing meteors seen organized by time bin

Figure 3: Portion of raw meteor sighting data
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Figure 4: Fitted unstable isotope decay, with bin size of 10 seconds

Figure 5: Sum of all the C10, C11, and C12 particles as they decay at different rates, each with an inital
sample size of 1000, and time bins of 10 seconds
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Figure 6: The graph above displays a portion of figure 5, to more easily show the particle decay. It also plots
the remaining number of total Carbon particles as a function of time.

Figure 7: Sum of all the C10, C11, and C12 particles as they decay at different rates, each with an inital
sample size of 1000, and time bins of 5 seconds
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Figure 8: Sum of all the C10, C11, and C12 particles as they decay at different rates, each with an inital
sample size of 1000, and time bins of 20 seconds

Figure 9: Sample 1, using 10,000 trials
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Figure 10: Sample 2, using 10,000 trials

Figure 11: Sample 3, using 10,000 trials
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m error (+/-) percent error

Sample 1 6.74887 0.0915 0.01356

Sample 2 (700 years) 2.68464 0.02718 0.01012

Sample 2 (1,985 years) 2.26839 0.02854 0.01258

Sample 3 0.0749251 0.002581 0.03445

Table 1: This displays the mean decay rates per minute, m, in counts per minute, standar and percent error.

5 Analysis

Figure 1 shows a portion of the time spent recoring meteor sightings. A value of 1, on the
vertical axis, is used to indicate the time at which each sighting occured. This data was re-
binned for more useful analysis. Figures 2 and 3 are different methods of displaying the same
re-binned meteor sighting data, using a histogram. Figure 2 represents the meteors seen as a
histogram, showing the number of times a particular amount of meteors was observed. Figure
3 shows represents this data, along with its error, and a Poisson distribution fitted to it.

The program found at:

http://www2.hawaii.edu/∼cmutnik/isotope2.html

was written using equation 3. Figure 5 displays the decay of the Carbon sample. It uses equation
3 to sum the remaining number of overall Carbon partcles, taking into account various decay
times. To generate this plot we assumed C12 to be stable and not decay, C11 to have a half-life of
1221 seconds, and C10 to have a half-life of 19.29 seconds. Taking into account that a particles
decay time is half-life/log(2). In figure 5 each time bin has a value of 10 seconds. Since the decay
occurs so rapidly figure 6 has also been included. Figure 6 is a zoomed-in portion of figure 5
and displays the total number of remaining Carbon particles. Figure 7 represents the same data
as figure 4 but using time bins of 5 seconds each, rather than 10 seconds. Figure 8 represents
the same data as figures 4 and 6 but using time bins of 20 seconds each. The 5 second time
bin process drastically underestimated the number of inital atoms, while the 20 second time bin
process overestimated. From this it is easy to conclude that time bins of 10 seconds are optimal,
when modeling this process.

Finally, we simulated a Poisson process in order to calculate the age of certain objects/materials.
Calculating the age of each sample is done by measuring the amount of C14 reamining in the
sample. We can do this by measuring the activity of a sample. Activity is the number of
detected decays of a sample. This counts are grouped into one minute time intervals. This
exploits the fact that all biomass contain a certain amount of the C14 isotope and C14 has a
precise activity of 15.0 decays per minute per gram. This required the implementation of the
Von Neumann method, which allowed for the transfromation of uniform random numbers. The
program used here can be found at:

http://www2.hawaii.edu/∼cmutnik/C14.html

Figure 9 represents the data from the first sample, a skeletal fragment of Encino Man, which
contained 6 grams of Carbon and was estimated to be 21,600 years old. Sample 2, linen of the
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Shroud of Turin, was estimated to either be 700 or 1,985 years old. Both cases were tested
and plotted in figure 10. The discrepancy between the overlaying sets of data tells us that if
we to take measurments over a longer period of time one ages’ data set would better depict
our fit. Data represented in table 1 shows that, for sample 2, -700 years is a more accurate
representation of the age than 1985 years old. It is this age that can be concluded as the more
correct estimation. Sample 3, a sample of hair from an unknown mummy contains 10 milligrams
(0.01g) of Carbon and is estimated to be 4,700 years old. Each of these samples was run using
10,000 trials. The overlapping of our data with the fitted curve indicates that the estimated
ages are accurate.

6 Conclusion

The ability to represent data in mulitple fashions is not something that should be over looked.
Raw, collected, data can be useful. But even more so, distributions that arise from properly
averaging such data allow accurate predictions to be made. By using computational techniques
we are able to properly fit data to a variety of distributions. Such tools are essential in deep-
ening our understanding and representation of the physical world. Modeling known behavior
accurately allows the predictions of others to be accurate, even if not directly observable.
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