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Abstract

The objective of this mission was to have a spacecraft leave Earths parking orbit (175 km),
venture to the Moon, and return back to Earth. To do this a program with proper force
laws needed to be written. It was necessary that the program also began with specific inital
parameters.

1 Introduction

Here we began by modeling the Earth-Moon system using the gravitational forces of one body
on the other. Inorder to properly model the system we had to solve for the center of mass
(barycenter). The barycenter is the point that each object in our system orbits. Using Newton’s
Force Laws we modeled the force each object had on the other:
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where F_"Lg is the force of one body acting on the other, G is the Gravitational constant, M; is
mass of object one, M is the mass of object two, 77 and r5 are the respective position vectors
of each body. From these standard force laws the acceleration each body caused on the other
was able to be determined. This was necessary in order to impliment the Runge-Kutta method
of numerical analysis.

To force structre on the system, Earth was placed at the proper distance below the barycen-
ter. The Moon’s inital location was located in the plane, above the barycenter.
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where rg is the distance from the center of the Earth to the barycenter, 7, is the distance from
the center of the Moon to the barycenter, M, is the mass of the moon, Mg is the mass of the



Earth, and D is the Earth-Moon distance. Knowing Mg >> M,, tells us that the barycenter is
located very close to the center of mass of the Earth. Once a proper Earth-Moon system was
modeled we introduced a third body, the Apollo 13 spacecraft. The objective was to simulate
the actual flight path of the Apollo 13 mission.
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Figure 1: The orbit of the moon, about the barycenter of the Earth-Moon system

Figure 1 is a graphical representation of the path traced out by the Moon’s orbit, about the
barycenter, in one sidereal Earth-Moon orbital period of 27.322 days.

2 Computational problem

During the Apollo 13 mission an issue with the No. 2 oxygen tank force the mission to be
modified. Instead of landing on the moon the astronauts aboard were forced to make a course
a correction. It was this correction that led to their gravitational slingshot around the Moon.
After tracing out a figure-eight flight pattern the crew was able to land back on Earth safely.
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Figure 2: The Earth-Moon system with a satellite orbiting the Earth

Figure 2 shows the orbits of the Earth, Moon, and Apollo spacecraft in parking orbit above
the Earth over a period of 3 days. In order to model the path of Apollo, as it ventured out
of Earths parking orbit, a change in velocity was necessary. After summing the velocity of the
spacecraft with that of Earths, a correction had to be made. For simplicity, the newly added
velocity was considered to be instantaneous. By adding more velocity Apollo broke free of
Earths parking orbit and began its transit to the moon.

The challenge was in uncovering the correct magnitude and direction of the necessary velocity
correction. When done properly the spacecraft would loop around the Moon and return the
onboard astronauts safely to Earth. Computationally, this is no easy task. First an attempt
at a Hohmann Transfer Orbit was made. In such a simplistic scenario this approach quickly
proved to surpass our programming capabilities. In order to achieve the desired goal a trial and
error method was implemented. Our first task was to hit the moon.
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3 Results
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Figure 3: Two different trajectories that cause a lunar crash
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Figure 4: The Apollo 13 spacecraft unable to orbit the moon

4 Analysis

Figure 3 depicts the Apollo spacecraft leaving Earths parking orbit and crashing into the Moon,
using two different changes in velocity. In order to do this the orbital mechanics of each body in



the system had to be taken into account. Once the arrival time was calculated it was possible
to have the spacecraft orbit the Moon. This called for another instantaneous change in the
velocity. Once a possible lunar orbital velocity is determined the task of brining Apollo 13 back
to Earth is done with another instantaneous velocity change. If done correctly, this simulation
will end with the safe return of all the onboard astronauts intact.

As seen in figure 4, it is no simple task to catch the orbit of the moon. Even after crashing
into the moons surface it proved to difficult to have the spacecraft orbit the moon. Without
the ability to wrap around the moon my program was not capable of returning the Apollo 13
rocket and its crew back to Earth.

5 Conclusion

Even after simplifications were made the instantaneous velocity corrections were not easy to de-
termine. More often than not, the spacecraft would miss the Moon entirely. In some simulations
the velocity correction was to small. This would have lead to the death of all the astronauts due
to starvation and dehydration, as they drifted between Earth and the Moon. This simulation
began with Apollo already in orbit. Having a rocket reach the Moon is no easy task. To get
men from Earth to the Moon and safely back again is a task few have ever achieved.
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