Fourier: Analysis & Transforms

Corey Mutnik
Computational Physics 305, University of Hawaii at Manoa
April 21, 2015

Results

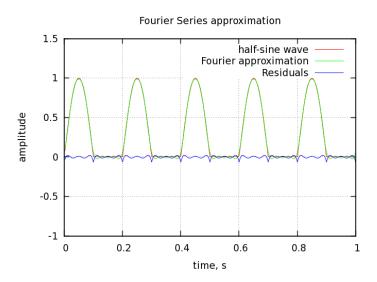


Figure 1: Graph of half-sine wave, fourier approximation, and residuals

To generate the fourier approximation of the half-sine wave graph a series was summed. A four term series had coefficients of: $a0 = \frac{2}{\pi} \approx 0.6366198$ entered cosine parameters (in order): $[0, -\frac{2}{3\pi}, 0, -\frac{2}{15\pi}] \approx [0, -0.21221, 0, -0.042441]$ entered sine parameters (in order): [0.5, 0, 0, 0]

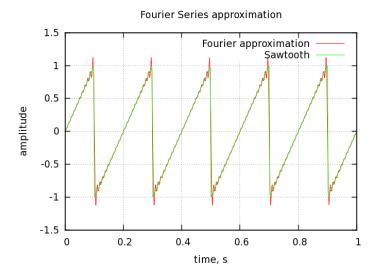


Figure 2: Graph of sawtooth function with fourier approximation

To generate the fourier approximation of the sawtooth function a series was summed:

$$y(t) = \frac{2}{\pi} \left[\sin(\omega t) - \frac{1}{2} \sin(2\omega t) + \frac{1}{3} \sin(3\omega t) - \dots \right]$$



Figure 3: Discrete fourier transform of cellphone data

The figure on the left displays the real and imaginary component while the figure on the right graphs the magnitude (amplitude) of the fourier component is given by:

$$|A(\omega)| = \sqrt{[Re(F(\omega))]^2 + [Im(F(\omega))]^2}$$

These figures were generated using the parameters:

fmin = 2.3e + 09, fmax = 2.5e + 09, fstep = 833333

120001 lines read, deltat= 1.000000e-11 s, tau = 1.200000e-06 s

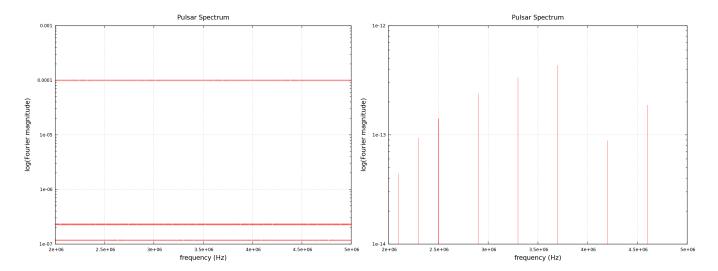


Figure 4: Discrete fourier transform of Pulsar data

The figure on the left was generated using the parameters:

fmin = 200000, fmax = 5e + 06, fstep = 1000

100001 lines read, deltat= 1.000000e-04 s, tau = 1.000000e+01 s

The figure on the right was generated using the parameters:

fmin= 200000, fmax= 5e+06, fstep= 100000

100001 lines read, deltat= 1.000000e-04 s, tau = 1.000000e+01 s

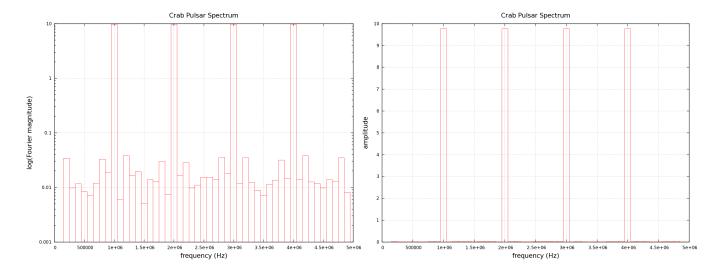


Figure 5: Discrete fourier transform of Crab Pulsar data

These figures were generated using the parameters:

fmin = 200000, fmax = 5e+06, fstep = 100000

148282 lines read, deltat= 6.734000e-05 s, tau = 9.985243e+00 s

This report can be seen in color at:

http://www2.hawaii.edu/~cmutnik/lab11.pdf